ImageCLEF 2010 Modality Classification in Medical Image Retrieval: Multiple Feature Fusion with Normalized Kernel Function

نویسندگان

  • Xian-Hua Han
  • Yen-Wei Chen
چکیده

In this paper, we describe an approach for the automatic modality classification in medical image retrieval task of the 2010 CLEF cross-language image retrieval campaign (ImageCLEF). This work is focused on the process of feature extraction from medical images and fusion the different extracted visual feature and textual feature for modality classification. To extract visual features from the images, we used histogram descriptor of edge, gray or color intensity and block-based variation as global features and SIFT histogram as local feature, and the binary histogram of some predefined vocabulary words for image captions is used for textual feature. Then we combine the different features using normalized kernel functions for SVM classification. The proposed algorithm is evaluated by the provided modality dataset by ImageCLEF2010.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomedical Imaging Modality Classification Using Combined Visual Features and Textual Terms

We describe an approach for the automatic modality classification in medical image retrieval task of the 2010 CLEF cross-language image retrieval campaign (ImageCLEF). This paper is focused on the process of feature extraction from medical images and fuses the different extracted visual features and textual feature for modality classification. To extract visual features from the images, we used...

متن کامل

FCSE at Medical Tasks of ImageCLEF 2013

This paper presents the details of the participation of FCSE (Faculty of Computer Science and Engineering) research team in ImageCLEF 2013 medical tasks (modality classification, ad-hoc image retrieval and case-based retrieval). For the modality classification task we used SIFT descriptors and tf − idf weights of the surrounding text (image caption and paper title) as features. SVMs with χ kern...

متن کامل

UESTC at ImageCLEF 2012 Medical Tasks

This paper describes the methods used and results archived by our research group in the ImageCLEF 2012 medical retrieval and classification tasks. We performed three sub-tasks, ad-hoc retrieval, case-based retrieval, and modality classification. For the retrieval tasks, we combined semantic-based retrieval with traditional text-based retrieval. The semantic-based retrieval was conducted by comp...

متن کامل

XRCE's Participation in Wikipedia Retrieval, Medical Image Modality Classification and Ad-hoc Retrieval Tasks of ImageCLEF 2010

This year, XRCE participated in three main tasks of ImageCLEF 2010. The Visual Concept Detection and Annotation Task is presented in a separate paper. In this working note, we rather focus on our participation in the Wikipedia Retrieval Task and in two sub-tasks of the Medical Retrieval Task (Image Modality Classification and Ad-hoc Image Retrieval). We investigated mono-modal (textual and visu...

متن کامل

Multi-disciplinary Modality Classification for Medical Images

Modality is a key facet in medical image retrieval, as a user is likely interested in only one of e.g. radiology images, flowcharts, and pathology photos. While assessing image modality is trivial for humans, reliable automatic methods are required to deal with large un-annotated image bases, such as figures taken from the millions of scientific publications. We present a multi-disciplinary app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010